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Abstract. We study self-diffusion within a simple hopping model for glassy materials. (The model is
Bouchaud’s model of glasses (J.-P. Bouchaud, J. Phys. I France 2, 1705 (1992)), as extended to describe
rheological properties (P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)).)
We investigate the breakdown, near the glass transition, of the (generalized) Stokes-Einstein relation be-
tween self-diffusion of a tracer particle and the (frequency-dependent) viscosity of the system as a whole.
This stems from the presence of a broad distribution of relaxation times of which different moments control
diffusion and rheology. We also investigate the effect of flow (oscillatory shear) on self-diffusion and show
that this causes a finite diffusivity in the temperature regime below the glass transition (where this was
previously zero). At higher temperatures the diffusivity is enhanced by a power law frequency dependence
that also characterises the rheological response. The relevance of these findings to soft glassy materials
(foams, emulsions etc.) as well as to conventional glass-forming liquids is discussed.

PACS. 64.70.Pf Glass transitions – 66.10.Cb Diffusion and thermal diffusion – 83.50.Fc Linear
viscoelasticity

1 Introduction

The dynamics of systems close to a glass transition re-
mains a central problem in statistical physics [1]. Because
the glass transition is a many-body phenomenon, mod-
els for it invariably involve some approximation and it
is important to disentangle the physical phenomena from
the approximation scheme used. In mode-coupling theo-
ries, for example, the dynamics are dominated by a small
number of collective degrees of freedom [2]. This is ap-
pealing, but ignores activated processes, and obscures the
fact that glassy materials are dynamically heterogeneous
with a variety of local environments [3]. Another approach
is to use disordered hopping models, which treat instead
single-particle degrees of freedom coupled to a random en-
vironment, and this is the route followed here. Such mod-
els, though unrealistic in some respects, are likely to give
a better account of those properties, such as self-diffusion,
which are not dominated by relaxation of collective modes.

An important breakthrough in the approach based on
hopping models was that of Bouchaud [4], who showed
that an ensemble of non-interacting particles, moving by
thermally activated hopping at temperature T in an un-
correlated fashion through a sequence of traps, can show
a glass transition. This occurs if and only if the den-
sity of states (the prior probability distribution of trap

a e-mail: R.M.L.Evans@ed.ac.uk
b Present address: Department of Mathematics, King’s

College, University of London, London, WC2R 2LS, UK

depths) ρ(E) has an exponential tail. Though grossly over-
simplified, this allows many properties of the model to be
calculated exactly. The exponential tail to the prior dis-
tribution ρ(E), which leads to a power-law spectrum of
relaxation times and is vital to the appearance of a glass
transition, is supported by evidence from theory on spin
glasses [5] and experiments on low-temperature fluids [6].
Such a power-law relaxation spectrum was the point of
departure for a related model of glasses [7,8], and simi-
lar features appear in models of dispersive transport in
disordered semiconductors [9].

The original model of Bouchaud has no explicit spatial
coordinates. Nevertheless, the extension to self-diffusion
is unambiguous (if each hop corresponds to a spatial dis-
placement with a well-defined second moment) and in-
deed Monthus and Bouchaud [10] gave an expression for
the distribution of displacements on a hypercubic lattice.
For flow properties, more choices are possible in the way
spatial coordinates are treated, but a minimal extension
of the model was offered by Sollich et al. [11,12]. This
model, which we call the GR (glassy rheology) model al-
lows both linear and nonlinear rheological properties to
be calculated. Details of it are recalled in Section 3 below.

The model introduced in reference [11] was in fact pro-
posed to describe a class of “soft glassy materials” (argued
to include foams, dense emulsions, etc.), in which context
it was found necessary to replace the thermodynamic tem-
perature T in Bouchaud’s model by an effective (noise)
temperature x � T . This replacement converts the GR
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model studied below into the soft glassy rheology model
of references [11,12], and can be made throughout our cal-
culations.

The glass transition in the GR model shows interesting
features which may need further explanation for readers
whose background lies in conventional glasses. Specifically,
in Bouchaud’s model the glass transition Tg is identified as
the temperature below which the system shows “weak er-
godicity breaking”: its Boltzmann distribution is not nor-
malizable. This means the system will evolve into deeper
and deeper traps as time goes by, and will never attain a
steady state — although at no finite time are there infi-
nite barriers partitioning phase space. When flow-related
degrees of freedom are included in the model (see Sect. 3
below), one finds, as expected, that the system has a fi-
nite elastic modulus (at zero frequency) for temperatures
T < Tg. Less obviously, the viscosity of the material di-
verges, not at T = Tg but at T = 2Tg. Between these two
temperatures, the static modulus is zero but the viscos-
ity infinite; the material is what is known in rheological
language as a “power-law fluid”. For applications of the
model to soft glassy materials this is a very attractive
feature, since such viscoelastic behaviour is frequently ob-
served in these systems [11,12]. In a model of conventional
glasses, on the other hand, it might be considered unde-
sirable. However, with the introduction of a high energy
cutoff in the prior distribution ρ(E), the phenomenology
of the GR model can be adapted to model that of con-
ventional glasses. We discuss the conceptual features of
this modification at the end of Section 7; for the actual
calculations in the present paper we restrict ourselves to
the simpler case without cutoff.

Below we calculate the statistics (additional to the
results of Ref. [10]) of self-diffusion in the GR model,
and explore quantitatively the breakdown, near the glass
transition, of the (generalized) Stokes-Einstein relation
[(G)SER] between self-diffusion of a representative par-
ticle in the fluid and the (frequency-dependent) viscosity
of the system as a whole. (This breakdown does not, of
course, imply that GSER also fails for macroscopic probe
particles which see the surrounding material as a con-
tinuum.) We also investigate the effect of shear flow on
self-diffusion and show that this causes a finite diffusivity
in the low-temperature regime where this was previously
zero.

In the next section we review the status of the GSER in
both conventional and soft glassy systems. The GR model
is described in Section 3 and used in Section 4 to study
and discuss the breakdown of the GSER. In Section 5,
we further elucidate the physics of particle transport in
glassy systems, using both analysis and simulation of the
model. In Section 6 we calculate the effects of shear on
the rate of self-diffusion, finding the diffusion constant in
the presence of continuous and periodic shear strains of
various rates and amplitudes. In Section 7 we conclude
with a discussion of our results in the context of both
conventional super-cooled/glass-forming liquids and soft
glassy materials.

2 Stokes-Einstein relation

The Stokes-Einstein relation (SER) between coefficients
of diffusion and viscosity (and its generalization to
frequency-dependent quantities) is of great importance to
our understanding of transport in fluids. This is especially
true since the development of new techniques to measure
viscoelastic response by light scattering from (or track-
ing of) probe particles [13–15]. Yet the relation’s range of
validity has been called into question by experiments on
super-cooled and glass-forming liquids [16–21].

To find the linear storage and loss moduli, G′(ω) and
G′′(ω), of a viscoelastic fluid, a rheometer is normally used
to apply an oscillatory stress to the fluid and measure
the resultant strain (or vice versa) as a function of (angu-
lar) frequency ω. A technique has recently been developed
whereby the complex viscoelastic modulusG∗ (≡ G′+iG′′)
may be found1, even when the available sample of fluid is
too small to fill a rheometer. The technique involves intro-
ducing one or more neutrally buoyant probe spheres of ra-
dius a into the fluid and measuring their Brownian motion.
For a Newtonian fluid, which is characterized by a single,
frequency-independent viscosity η, that viscosity is given
by the familiar Stokes-Einstein formula η = kBT/6πaD.
Here kB is Boltzmann’s constant and T temperature. As
the fluid is Newtonian, the probe executes an unbiased
random walk, and its mean-square displacement as a func-
tion of time is

〈
r2(t)

〉
= 6Dt, which defines the diffusion

constant D appearing in the Stokes-Einstein formula. In
this purely viscous fluid, G∗ is purely imaginary, given by
G∗(ω) = iωη. As the derivative of the stress relaxation
modulus is a well-behaved function of time, its Laplace
transform G̃(s) is simply related to its Fourier transform
G∗(ω) = G̃(iω). Combining the above expressions, we see
that probe spheres in a Newtonian fluid respect the rela-
tion

G̃(s) =
kBT

πas〈r̃2(s)〉
(1)

where 〈r̃2(s)〉 is the Laplace transform of the mean-square
displacement of a probe. Equation (1) says that the mod-
ulus of a viscoelastic fluid is the ratio of a driving force (in
this case induced by kBT rather than by a rheometer) to
a response (mean-square distance moved by the sphere).

Although derived above only for the Newtonian case,
equation (1) is the generalized Stokes-Einstein relation
(GSER), and when written in this form it applies under
relatively general conditions2 to all linearly viscoelastic
fluids, not just Newtonian ones [14]. The basic Stokes-
Einstein relation (SER) is recovered from equation (1)
in the zero frequency limit, since viscosity is defined
by η ≡ limω→0G

′′(ω)/ω. In all cases, the fluid around

1 G∗(ω) is the Fourier transform of the time derivative of
the stress relaxation modulus Gr(t), which relates stress on

the fluid, σ(t) =
R t

0
dt1Gr(t− t1)γ̇(t1), to strain rate γ̇(t).

2 At sufficiently high frequency, for a probe of finite mass,
the modulus has an additional inertial contribution which we
drop.
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the probe is treated as a featureless continuum, and there-
fore the result is only valid when the sphere radius greatly
exceeds the microscopic length scale (e.g. particle size)
of the fluid. (Furthermore, probe particles must be suffi-
ciently dilute to ensure independent Stokesian flow fields
around each.) If, as is sometimes the case, the GSER is
applied to probe particles which are not large compared
to the microscopic scale, then it ceases to be a rigorous
result. As an approximation, it is then close to the spirit
of effective medium theory (wherein a representative par-
ticle is viewed as embedded in a continuum and its contri-
bution to the continuum properties then calculated self-
consistently).

With macroscopic probe particles, the GSER has been
fruitfully employed [13,14] to measure the rheological
properties of viscoelastic fluids from light scattering or
optical tracking observations of the suspended probes. In
reference [15], Mason and Weitz applied this method suc-
cessfully to various systems, using colloidal spheres as
probes. Remarkably, in one case the medium analysed was
itself a suspension of the colloidal particles, of volume frac-
tion φ = 0.56, which lies close to the glass transition con-
centration. The scattering method used was diffusion-wave
spectroscopy (DWS) [22] whose direct interpretation in
terms of self-diffusion is somewhat ambiguous; but in any
case, both criteria for the rigorous validity of the GSER
were violated (no separation of length scales, and probe
particles not dilute). Yet the diffusion data for this system,
analysed as though DWS was probing self-diffusion and
transformed into putative rheological data via the GSER,
compare remarkably well with frequency-dependent rhe-
ological data measured directly. Among various explana-
tions that are possible for this, is the idea that the GSER
is in fact more widely valid than generally assumed [15].

On the other hand, in conventional glass-forming flu-
ids, the (zero-frequency) tracer diffusion and viscosity
have been measured as a function of temperature, by ex-
periment [16–21] and simulation [23]. While the SER held
(within a factor of order unity) for probes just a few times
larger than the fluid particles [19], for equal-size probes
the translational diffusion was enhanced by orders of mag-
nitude with respect to the SER prediction as the glass
transition was approached.

In view of the unexpected success of GSER for colloidal
glassy fluids, alongside the failure of SER for conventional
glasses3, a more detailed examination of the connection
between diffusion and rheology seems worthwhile, and we
pursue this in what follows.

3 The model

We use a simple hopping model to emulate properties of a
fluid close to its glass transition. The model, which will be
referred to as the “glassy rheology” (GR) model, was de-
fined in reference [11], where its response to a macroscopic

3 For a related discussion of the failure of Einstein relations
in biased diffusion processes, see [24].

shear was calculated. In the present study we shall investi-
gate the relation between rheology and particle transport
in the GR model.

3.1 Definition

The GR model is based on Bouchaud’s model for glassy
dynamics [4], with the addition of shear strain degrees of
freedom which that model lacks. Particles in the Bouchaud
model are thermally activated at temperature T = β−1

from traps of energetic depth E in a time τ which has an
exponential distribution with rate Γ0 exp−(βE), where
Γ0 is some microscopic rate constant. Having escaped, a
particle selects its next trap at random (i.e. there are no
spatial correlations) from the prior distribution of trap
depths ρ(E). We briefly recall the resulting behaviour of
Bouchaud’s model. For high temperatures T , the occu-
pancy of traps of depth E evolves towards the Boltzmann
distribution P eq

occ(E) ∼ ρ(E) exp(E/T ). As T is lowered,
this distribution may cease to be normalizable, leading to
a glass transition at T−1

g = − limE→∞(∂/∂E) lnρ(E). For
T < Tg, no equilibrium state exists, and the system shows
“weak ergodicity breaking” and various ageing phenom-
ena. A finite value of Tg implies an exponential tail in the
density of states, ρ ∼ exp(−E/Tg).

The GR model ascribes some internal features to the
traps. This is done through a minimalist description in
which the tensorial aspects of the problem are ignored and
the shear rate and strain are treated as though they were
scalar quantities [11,12]. The trap’s potential is taken to
be quadratic in a local strain (or relative displacement)
coordinate l, so that the particle’s energy is 1

2kl
2, with k

a constant. This applies up to a local yield value ly, whose
energy E = 1

2kly
2 is the depth of the trap. Upon reach-

ing this threshold, the system locally rearranges to a new
configuration, thus relaxing the local strain ly. The yield
energy of the new potential well is drawn from the prior
distribution ρ(E), and its strain l set to zero. In the ab-
sence of an externally imposed shear rate γ̇, all l values
remain zero, and the GR model reduces to the Bouchaud
model, with hopping between traps caused by thermal ac-
tivation alone. With shear imposed, changes in all local
strains are assumed to follow the global strain rate, l̇ = γ̇.
(This assumption is mean-field in character.) With the
particles thus dragged up their quadratic energy wells by
global shear, the barrier to thermal activation is reduced,
and the local yield rate becomes Γ0 exp[−β(E − 1

2kl
2)]. If

Pocc(l, E; t) dl dE is the probability of finding an occupied
trap of given l and E, the above dynamics imply [11,12]

∂

∂t
Pocc = −γ̇ ∂

∂l
Pocc − Γ0e−β(E−1

2kl
2)Pocc+Γ (t) ρ(E)δ(l).

(2)

The first term on the R.H.S. arises from local straining by
the macroscopic deformation. The second describes the
loss of occupied traps from the distribution by thermally
activated yielding. The last term corresponds to creation
of new, unstrained configurations, whose trap depth is
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drawn from the prior ρ(E), at a rate equal to the total
yield rate in the system, Γ (t) = Γ0

〈
exp[−β(E − 1

2kl
2)]
〉
P

.
Note that, as originally conceived in the context of

soft glassy materials [11,12] each occupied trap repre-
sented a small region of the medium, large enough for
a local shear strain l to be defined, but small enough for
this to be approximately uniform within the region. How-
ever, the model can readily be interpreted as describing
the motion of individual particles in a conventional super-
cooled/glass-forming fluid, by associating the local strain
l with, say, the relative displacement of a particle from the
centre of a trap formed by its neighbours.

We have not yet defined the stress in the GR model.
Due to stochastic yielding events, the local stress, which
we take to be kl, is inhomogeneous (it follows the local
strain l, rather than the macroscopic strain). Since we
have stated that the strain rate l̇ is everywhere equal to
the global strain rate γ̇, these local stresses must combine
according to a straightforward average so that σ = k 〈l〉 ≡
k
∫
l Pocc(l, E; t) dl dE. As discussed in Section 4.1, this

corresponds to a fully parallel mechanical circuit; this is
the only combination consistent with affine shear, and may
well be approached in many physical systems.

3.2 Rheology and diffusion

The dynamics described (Eq. (2)) are further motivated
in references [11,12], where the GR model’s constitutive
relation between stress and strain rate is calculated. We
now briefly summarize the linear rheology that the model
predicts. We use non-dimensional units for time and en-
ergy by setting Γ0 = Tg = 1; we also re-scale our strain
variables (l, γ) and stress σ so that k = 1. The complex
dynamic shear modulus G∗(ω) = G′ + iG′′ describes the
stress response to small shear strain perturbations around
the equilibrium state. As such, it is well-defined (i.e. time-
independent) only above the glass transition, T > 1. Ex-
panding equation (2) to first order in the amplitude γ0 of
an oscillatory strain γ(t) = γ0 cosωt, we find

G∗(ω) =
〈

iωτ(E)
iωτ(E) + 1

〉
occ

(3)

where the average is taken with respect to occupied traps,
and τ(E) = exp(βE) is the mean (Arrhenius) residence
time for a trap of depth E. (We distinguish this from
the actual residence time τ in such a trap, which is a
random variable.) Equation (3) corresponds to a distri-
bution of Maxwell modes whose spectrum of relaxation
times is given by the equilibrium distribution P eq

occ(E) ∼
exp(βE)ρ(E). Given that ρ(E) has an exponential tail
(required for Tg to be finite), the distribution of resi-
dence times thus exhibits power-law behaviour for large
τ : Ψocc(τ) ∼ τ−T . This leads to power laws4 for G∗ in the

4 Such phenomenology is not confirmed for conventional
glass formers. However, with a high-energy cutoff in ρ(E),
which may be apparent in conventional glasses, Maxwellian
behaviour re-appears at low ω. See Section 7.

low frequency range:

G′ ∼ ω2 for 3 < T, ∼ ωT−1 for 1 < T < 3
G′′ ∼ ω for 2 < T, ∼ ωT−1 for 1 < T < 2. (4)

For T > 3 the system is Maxwell-like at low frequencies,
whereas for 2 < T < 3 there is an anomalous power law
in the elastic modulus. Most interesting is the regime 1 <
T < 2, where G′ and G′′ have constant ratio; both vary
as ωT−1. Moreover, the frequency exponent approaches
zero as T → 1, resulting in essentially constant values of
G′′ and G′. Note, however, that the ratio G′′/G′ ∼ T − 1
becomes small as the glass transition is approached.

This increasing dominance of the elastic response G′
prefigures the onset of a yield stress for T < 1 [11,12].
However, for T < 1 the linear viscoelastic moduli show
slow time evolution and ageing effects [25] in accordance
with the weak ergodicity breaking discussed in Section 1.
Accordingly, in the following section, where the GSER for
this model is discussed, we consider only T > Tg = 1.
However, that does include the regime Tg ≤ T ≤ 2Tg

which would lie below the “glass transition temperature”
were this to be defined operationally by the divergence of
the viscosity. As Tg is approached from above, the equi-
libration time following a quick quench diverges. Hence,
even for T > Tg, non-equilibrium situations are also of in-
terest in glass-forming materials, though we shall consider
only equilibrium situations in the following section.

In order to study self-diffusion [10], we must clarify
further the spatial interpretation of our GR model. We
shall associate each relaxation event with a step on an un-
biased random walk. We draw each step from a Gaussian5

of unit variance in each spatial direction (thus defining a
length unit for the model). This gives a meaning to the
square displacement, r2(t). After each step, the randomly
walking particle is temporarily trapped within a potential
well. Within each well, we assume rapid “thermalization”
of the particle, which therefore samples a Gaussian distri-
bution of displacements at each site on the walk6. In fact,
we assume this thermalization to be instantaneous, thus
discarding information about high frequency intra-well dy-
namics. Hence, we model the time regime of α-relaxation,
but not of β-relaxation.

4 Test of the GSER for small probes

We have the complex linear viscoelastic modulus for the
GR model, quoted in the section above. It is now our
task to compare this with the prediction of the GSER,
applied to a probe particle which is representative of the
fluid itself. The result of equation (1), whose validity is
in doubt for a small probe of this kind, will be denoted

5 Given that the walk is Markovian, our choice of geometry of
the individual steps will not influence the large-scale behaviour.

6 We neglect modification of the Gaussian by the leaky
boundary condition at the edge of the well. This is consistent
with the unmodified hopping probability used to construct the
GR model [11,12].
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G̃sp. Calculating G̃sp from equation (1) requires a knowl-

edge of
〈
r̃2(s)

〉
in the equilibrium fluid. The brackets 〈...〉

denote an average over all random walks of the particles,
in terms of choice of path and of trap depths drawn from
the prior distribution ρ(E). In the absence of intra-well
structure, the treatment of continuous-time random walks
is discussed in references [10,24,26,27]. The mean-square
displacement can be found from the correlation function
C, defined by C(q, t) ≡

〈
eiq·r(t)

〉
. This is calculable [10] via

C(q, t) =
∑∞
N=0 Q̂N (q) pt(N) where pt(N) is the proba-

bility of having performed exactly N hops at time t, and
Q̂N (q) is the Fourier transform of the positional proba-
bility distribution after an N -step random walk. As de-
scribed in Section 3, the positional distribution is the con-
volution of a standard random walk and a “Gaussian of
thermalization” (whose variance is Td/k, where k = 1 is
the local spring constant, and d the dimension of space).
So its Fourier transform Q̂N(q) is the product of the usual
function exp(−Nq2/2) and another Gaussian.

The quantity pt(N) depends only on the distribution
of residence times. Note that the time between hops along
a random walk is drawn from the distribution Ψhop(τ),
which is not the distribution of residence times of occupied
states in the system, Ψocc(τ). The former distribution gives
the inter-hop times available to a random walker upon
selecting its next trap. The latter gives the residence times
of all the states in the system which are presently occupied.
Thus Ψocc(τ) is related to Ψhop(τ) by a weight factor τ ,
since the likelihood of finding a given trap occupied is
proportional to the time for which it is occupied:

Ψocc(τ) =
τΨhop(τ)
〈τ〉hop

· (5)

Accordingly, averages of some stochastic quantity Q with
respect to the two distributions are related by

〈Q〉hop =
〈Q/τ〉occ

〈τ−1〉occ

, 〈Q〉occ =
〈τQ〉hop

〈τ〉hop

· (6)

In terms of a typical random walk, 〈Q〉hop is the aver-
age with respect to the steps, while 〈Q〉occ is the average
with respect to time. Note that, in calculating the prob-
ability pt(N) of having performed N hops at time t, the
time spent in each trap is drawn from Ψhop(τ) except for
the first trap [26,27], which is selected from Ψocc(τ). This
reflects the fact that the walker is not introduced to the
system at time zero, but is selected at random from the
traps already occupied. This careful choice of the first trap
is important to the diffusive behaviour at early times [26]
and, as we shall see, its influence persists for increasingly
long times as the glass transition is approached.

From the definition of C(q, t) it follows that, in terms
of its temporal Laplace transform C̃(q, s),〈

r̃2(s)
〉

= − ∇2
qC̃(q, s)

∣∣∣
q=0

(7)

where ∇q denotes a derivative in q-space. From this pre-
scription, we find〈

r̃2(s)
〉

=
Ψ̃occ(s) d

s (1− Ψ̃hop(s))
+
T d

s
· (8)

Here, Ψ̃(s) is the Laplace transform of Ψ(τ). The distribu-
tion of available escape times Ψhop(τ) is given by averaging
the exponential distribution for a single trap over the prior
energy distribution ρ(E) thus:

Ψhop(τ) =
∫ ∞

0

dE ρ(E) exp−[βE + τe−βE ]. (9)

So its Laplace transform is

Ψ̃hop(s) =
〈

1
1 + sτ(E)

〉
hop

(10)

with τ(E) = eβE the mean residence time for trap depth
E. The expression for Ψ̃occ(s) is the same, with the average
over hops replaced by an average over occupied traps. So,
from equation (6),

Ψ̃occ(s) =
1

〈τ〉hop

∫ ∞
0

dE
ρ(E)τ(E)
1 + sτ(E)

=
1− Ψ̃hop(s)
s 〈τ〉hop

. (11)

Substituting this expression into equation (8) cancels the
Ψ -dependence. So we see that the second moment of the
distribution of displacements,〈

r̃2(s)
〉

=
Td

s
+

d

s2 〈τ〉hop

, (12)

is independent of any properties of the distribution of trap-
ping times except for its mean.

If we use this expression for the self-diffusion of a small
probe to calculate the modulus in equation (1) (and sub-
stitute s = iω to find the complex viscoelastic modulus in
the Fourier domain), we find7 that the GSER, applied to
a small probe, predicts a complex modulus

G∗sp(ω) =
iωτ0

1 + iωτ0
(13)

with τ0 ≡ T 〈τ〉hop = T/
〈
τ−1

〉
occ

.

This is exactly Maxwellian behaviour at all temperatures
for which an equilibrium distribution exists (i.e. for all
T > Tg = 1). Clearly, this expression is completely at odds
with the actual rheology of the GR model as described in
Section 3.

4.1 Breakdown of the GSER

The generalized Stokes-Einstein relation, when applied to
a small probe, has failed in two distinct ways which we

7 We have set d = 3 and particle radius a = kB/3π to sim-
plify the constant of proportionality in the GSER (Eq. (1)).
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now discuss. The first is a (fairly trivial) discrepancy in
the temperature dependence, which is inherent in any hop-
ping model. To study the spurious T -dependence of the
characteristic time in equation (13), let us take the in-
verse Laplace transform of equation (12). Thus we find
the nature of the probe’s diffusive motion as a function of
time: 〈

r2(t)
〉

= Td+ td/ 〈τ〉hop . (14)

The time-independent term Td is the variance of the lo-
cal “Gaussian of thermalization” in which the probe finds
itself at each step of its walk, and respects equipartition
of energy amongst the elastic degrees of freedom. The sec-
ond term says that diffusion is exactly linear on all time
scales8, with a diffusion constant

D = 1
2 〈τ〉

−1
hop = 1

2

〈
τ−1

〉
occ

. (15)

The GSER implies that the mean-square speed (also given
by equipartition,

〈
1
2mv

2
〉

= 1
2kBTd) sets the rate of trans-

lation along the random walk. Indeed this is why the
diffusion constant is proportional to temperature in di-
lute gases, where particles are not caged, so their di-
rections rapidly become decorrelated. Like any activated
hopping process [29] with a temperature-independent mi-
croscopic attempt rate (e.g. the Eyring model of dense
fluids [30]), the GR model lacks such a factor T in the dif-
fusion constant (Eq. (15)). This is the source of the rogue
T -dependence of G∗sp. As the GR model is designed to be
applied close to the glass transition, factors of T are of
order unity. This source of deviation from the GSER is
therefore not of great importance to most experiments,
which usually only test it up to factors of order unity
[13,15,19].

However, the GSER is violated by much larger fac-
tors than this arising from the second source of error in
equation (13). This is the “misplacement” of the ther-
mal averaging brackets, when compared with the correct
expression in equation (3). In a Maxwellian fluid, the
distribution of lifetimes is narrow, since there is a sin-
gle characteristic relaxation time. Thermal averaging then
commutes with the other algebraic operations, so the in-
correct placement of the thermal brackets becomes irrele-
vant in that case9. However, the GSER result breaks down
for broad distributions such as exist both in many real
glass formers, and in the GR model. To illustrate this,
let us compare the diffusion constant (Eq. (15)) with that
predicted by the Stokes-Einstein relation (zero-frequency
limit of the GSER), given the GR model’s actual viscosity.
From equation (3) with η ≡ limω→0G

′′(ω)/ω, the SER
gives the diffusion constant as T/2η = T/2 〈τ〉occ. The
first moment of the distribution of times for which traps

8 We note that the diffusive term in equation (14) is equiv-
alent to the infinite-dimensional limit of the exact result for
a random trap model on a hyper-cubic lattice obtained by
Schroeder [28] and Kehr et al. [26,27].

9 In fact, the GSER for small probes is tantamount to mean
field theory, in which averaging indeed commutes with certain
algebraic operations.

are occupied 〈τ〉occ diverges in the GR model for tem-
peratures below T = 2, whereas

〈
τ−1

〉
occ

, which appears
in equations (15, 13), remains finite. Thus D is enhanced
with respect to the SER value as the viscous divergence is
approached, as is widely observed in experiment and sim-
ulation [16–19,23]. We note, however, that the GR model
is not sufficiently elaborate to account for the power law
(1/D ∝ ηξ, ξ < 1) which has been observed to replace the
SER in some supercooled fluids [16].

The rheology of the GR model is equivalent to a set of
over-damped harmonic oscillators (e.g. masses on springs
in dash-pots) connected in parallel. Each over-damped el-
ement has the characteristics of a Maxwellian fluid, with
a different time constant. Even if only a vanishingly small
fraction of the population of Maxwell models becomes in-
finitely viscous (i.e. their time constants τ diverge), it will
be apparent in the response of the system, whose stress
is the sum of stresses of the population10. Contrast this
with the GSER for a small probe, equation (13). It claims
to derive the moduli from a knowledge of only the second
moment,

〈
r2
〉
, of the distribution of displacements. This

is (qualitatively) more like summing compliances of the
population11.

This discussion shows that the second moment alone,〈
r2
〉
, does not contain sufficient information about the

distribution of displacements (or, equivalently, about the
full distributions Ψ(τ)) to find the rheological behaviour
of the GR model. Specifically, this moment would be
unaffected by a vanishingly small subset of the population
being stuck for infinite time at r = 0; yet this subset may
dominate the rheology, e.g. by causing 〈τ〉occ to diverge.

5 Hopping statistics in the GR model

As we have mentioned, the GR model shows some in-
triguing dynamical features. The viscosity diverges at a
temperature (T = 2) well above the glass transition tem-
perature (Tg = 1 defined as the temperature below which
the system has no equilibrium steady state). The diffu-
sion constant D vanishes at Tg, and yet not all particles
are static below this temperature. In this section we gain
a fuller picture of the model’s dynamics, by investigating
its hopping statistics analytically and by simulation12.

10 The connectivity of the damped oscillators, which is par-
allel for the GR model (Sect. 3), will be different in many real
systems, becoming a more elaborate network of series and par-
allel connections.
11 Of course, the valid application of the GSER (to a large
probe) is equivalent to parallel connection of Maxwell models,
since the surface of the large probe feels the simultaneous influ-
ence of many degrees of freedom, which, within the GR model,
have additive stresses.
12 A similar analysis was carried out by Kehr et al. [26,27]
on a real lattice (i.e. with spatial correlations). They mod-
elled diffusion in crystals which exhibit no glass transition, and
therefore used a distribution of residence times narrower than
ours.
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Let us begin by comparing the two distributions
Ψhop(τ) and Ψocc(τ), for the residence times of particles
in a trap. The first is taken over the prior distribution
(of a priori available states); the second over those states
which are actually occupied at any given time. As stated in
Section 4, these two distributions are so different that se-
lecting just the first step on a random walk from the wrong
distribution can have drastic effects on

〈
r2(t)

〉
which per-

sist up to rather late times. Suppose that by mistake the
initial residence times were drawn from the distribution
Ψhop(τ) (which is the correct choice for all subsequent
residence times), rather than from Ψocc(τ) (which is cor-
rect for the first one only [26,27]). The mean square dis-
placement

〈
r2(t)

〉
prior

over this hypothetical ensemble has
Laplace transform

〈
r̃2(s)

〉
prior

=
Ψ̃hop(s) d

s (1− Ψ̃hop(s))
+
T d

s
(16)

which, in contrast to equation (12), does not depend only
on the mean of the distribution Ψhop(τ). The resultant〈
r2(t)

〉
prior

is a non-linear function of time (tending to
Eq. (14) as t → ∞ [24]) which increases monotonically,
even at T = Tg (where the true diffusion constant van-
ishes).

The correct value of
〈
r2(t)

〉
given in equation (14) is

not found as just outlined, but instead by weighting each
walk in the ensemble with the residence time of the trap
it is initially in [26,27]. This factor is required because the
probability of a particle initially being found in a given
trap is proportional to the residence time of that trap.
(Since we are interested in a system which has already
equilibrated, the particles have, in principle, had time to
sample the distribution of traps, and are therefore more
likely to be found in long-lived states than a priori.) It is
somewhat unintuitive (though necessary as a consequence
of the system’s steady state) that this re-weighting of the
ensemble should conspire to cancel all non-linearity from
the time dependence of mean square displacements im-
plicit in equation (16) and yield equation (14) instead.

For the exponential prior ρ(E) = exp(−E), it can be
deduced straightforwardly from equations (10, 6) that, in
Laplace time,

Ψ̃hop(s) = T

∫ ∞
0

du
e−(T+1)u

s+ e−u

Ψ̃occ(s) = (T − 1)
∫ ∞

0

du
e−Tu

s+ e−u

from which it follows, showing temperature dependence
explicitly, that

Ψocc(τ ; T ) = Ψhop(τ ; T − 1). (17)

Thus, at equilibrium, the residence time distribution of
occupied states coincides with the prior distribution of
such times at a substantially lower temperature.

5.1 Numerical results

To observe the process in action, we simulated the acti-
vated hopping of 105 particles, using the exponential prior
distribution of trap depths ρ(E) = exp(−E). For each par-
ticle, the time interval for successive hops was drawn from
Ψhop(τ) (Eq. (9)) for all but the first hop (as in [26]). The
algorithm used to simulate hopping in the system between
times 0 and t is as follows. Each of the 105 particles is ini-
tially scheduled with a hopping time drawn from Ψocc(τ).
If this is greater than t, the particle is not visited again,
and is recorded as performing zero hops during the sim-
ulation. The remaining particles are successively assigned
further relaxation times13 drawn from Ψhop(τ) and their
numbers of hops incremented, until the next hop is sched-
uled for after t. In this way the distribution pt(N) of the
number N of relaxation events up to time t was measured,
as a function of temperature.

The distribution of hops pt(N) gives a clearer picture
of dynamics in the system than the distribution of dis-
placements, which is just its convolution with a random
walk for which

〈
r2
〉

= Nd. The results appear in Figure 1
for a range of temperatures and times. We see that, at high
temperature, all the particles are mobile and concentrated
in a peak whose position increases linearly with time. As
the temperature is lowered towards the glass transition
(T = 1), a second peak containing a significant fraction of
the population appears at N = 0. Of course, as this peak
decays, it feeds the rest of the distribution. Its lifetime
increases as the transition is approached, yet the rest of
the distribution, for which it is the source, remains con-
centrated in a mobile peak.

5.2 Analysis of bimodal diffusion

We consider next the time dependence of pt(0), which is
the probability that the time of the first hop exceeds t:

pt(0) =
∫ ∞
t

Ψocc(τ) dτ. (18)

Using equation (17) and expressing Ψhop(τ) in terms of
an incomplete gamma function, Ψhop(τ) = τ−(T+1)γ(T +
1, τ)/T (from Eq. (9) with ρ(E) = e−E), we have

pt(0) =
γ(T, t)
tT−1

+
e−t

t
−−→
t→∞ (T + 1)! t−(T−1). (19)

So the population of stuck particles decays by an increas-
ingly slow power law as the glass transition is approached.
Of course, this decay is fastest at early times, so this is
when the maximum in the mobile peak is formed. The
width of the mobile peak grows with the usual square-
root relation to its mean so, at late times, the population
is concentrated in two distinct and narrow regions.

13 The stochastic variable τ = −ξ−1/T ln ξ′ is distributed
according to Ψhop(τ ) if ξ and ξ′ are distributed uniformly
on (0, 1).
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Fig. 1. Normalized distributions of number of hops performed, pt(N), in simulations at various temperatures T and times t.
For (T = 1.1, t = 1000), pt(0) = 0.476 ± 0.002 and the rest of the distribution is magnified in the inset.

This confirms the result of the above simulation, that
the diffusion process in the GR model leads, near the glass
transition, to a strongly bimodal distribution of displace-
ments. Having hopped once, a particle is more likely to
hop again in a given time, since relaxations in the mobile
peak are drawn from the (effectively higher-temperature
— Eq. (17)) hop distribution Ψhop(τ). Nevertheless, the
distribution of residence times throughout the whole sys-
tem (both peaks) is Ψocc(τ). Furthermore, the simula-
tional data confirm that, although the mean of the mobile
peak is a non-trivial function of time and temperature (cf.
Eq. (16)), the two peaks together conspire to produce

N =
t

〈τ〉hop

=
T − 1
T

t

in agreement with equations (14, 15). In reference [26],
such linearity in time was shown to hold in the steady
state of any system of random walkers. Nevertheless, in
our highly bimodal distribution, it appears somewhat re-
markable.

That the “diffusion coefficient”D should actually com-
prise an average over two such distinct populations might

call into question whether the dynamics of the model can
properly be called diffusion at all: the mean square dis-
placement may be linear in time, but is this diffusion in
the ordinary sense? To address the question, we calculate
the variance in r2(t), that is

〈
r4
〉
−
〈
r2
〉2, and find, for

1 < T < 2,√
〈r4〉 − 〈r2〉2

〈r2〉
−−→
t→∞

√
2
d

+
5Γ (T )

(3− T )(2− T )
√

2d tT−1
·

The leading term is the standard value for simple diffusion.
The way in which this limit is approached is temperature
dependent, but such sub-dominant terms are unlikely to
impinge on experimental measurements of the diffusion
constant in the ergodic (T > 1) system. The deviation
from a Gaussian distribution of r at finite times is often
characterized by the “non-Gaussian parameter” A(t) de-
fined [31] as

A(t) ≡ 3
5

〈
r4
〉

〈r2〉2
− 1
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in 3 dimensions. Above the glass transition, this is ex-
pected [7] to vanish in the infinite-time limit. For 1 < T <
2, we find

A(t)−−→
t→∞

2Γ (T )
(3− T )(2− T ) tT−1

whereas A ∼ 1/t above T = 2. So the non-Gaussian pa-
rameter in the GR (and Bouchaud’s) model does indeed
vanish, but does so increasingly slowly as the glass tran-
sition is approached. The same qualitative results were
observed by (amongst others) Miyagawa et al. in MD sim-
ulations [32].

5.3 Timescales

We conclude this section on unforced diffusion in the GR
model by summarizing the important time-scales that
are present in both diffusion and rheology. The diffu-
sion is controlled by 〈τ〉−1

hop, equivalent to the mean rate,〈
τ−1

〉
occ

, which vanishes linearly at T = Tg = 1. The
mean time between yielding events in the system, 〈τ〉occ
controls the GR model’s viscosity, and diverges at T = 2,
although the mean hopping rate is finite here. The me-
dian of Ψocc(τ) also remains finite below T = 2. From
equation (18), it is the time at which half the population
has relaxed (when p(0) = 1

2 ). From equation (19) this is

t1
2

(T ) ≈ [2(T + 1)!]
1

T−1 (20)

which has a rather strong divergence at the glass transition
(T = 1). Meanwhile, the mode of the distributions Ψhop(τ)
and Ψocc(τ), i.e. the most likely time between hops, is
always zero.

Given these subtle statistical properties of the self-
diffusion process, which arise from the power law distribu-
tion of relaxation times in the GR model, it is no surprise
that the GSER (which from Eq. (15) contains only 〈τ〉hop)
fails for microscopic probes.

6 Diffusion in the presence of shear

So far we have explored only the linear response functions
of the GR model, G∗(ω) and 〈r2(t)〉, and their interre-
lation. These describe any system for which the applied
shear stress is either zero or so small as not to disturb ther-
mal equilibrium. Let us now turn our attention to applied
shear rates which are sufficiently large to influence self
diffusion, and calculate the effect. Of course, particles in
Brownian motion are also convected by the system’s affine
shear motion, but this effect (in which we include Taylor
dispersion) can be subtracted from the overall trajectory
to reveal the perturbed diffusive contribution14. (In simple
14 This applies, at least, in numerical studies, and was done in
a recent MD simulation [23]. Taylor dispersion is the enhanced
spreading in the flow direction arising from particles diffusing
from one streamline to the next. When this and the trivial
affine motion is subtracted, the remaining Brownian motion
had negligible anisotropy.

shear, no such subtraction is needed for the component of
Brownian motion transverse to the flow.) The rheology of
the GR model [11,12] exhibits strong nonlinearities aris-
ing from shear-induced hops. These occur as a particle is
strained within its well, and moves up the energy curve
toward the yield value, making a thermal hop far more
likely. Clearly such shear-induced hops could have a radi-
cal effect on the diffusive properties too. We assume that,
although biased by the affine motion, each such hop still
entails a random displacement whose statistics is the same
as when flow is absent.

After subtraction of the affine motion, the diffusion
constant is defined by

〈
r2(t)

〉 −−→
t→∞ 2Dtd in d dimensions.

For a random walk of N hops,
〈
r2
〉

= Nd so, to calculate
D, we just require the number of hops executed by an
average particle in a given long time. That is,

2D = lim
t→∞

〈
N

t

〉
=

1
〈τ〉hop

(21)

since the time spent in each trap along the walk15 is drawn
from Ψhop(τ), and each random walk becomes typical after
a sufficiently long time. We now evaluate equation (21) in
the presence of shear.

Given a time-dependent macroscopic shear γ(t), the
yield rate for a trap which was entered at time t0 was
prescribed in Section 3 as

Γ0 exp{−β(E − 1
2k[γ(t)− γ(t0)]2)}

since the trap has subsequently been sheared by an
amount l = γ(t) − γ(t0). At time t, the probability of
not having hopped from the trap of depth E entered at t0
(which we call fE(t, t0)) is therefore

fE(t, t0) = exp
{
−e−βE

∫ t

t0

dt′ exp
(

1
2β[γ(t′)− γ(t0)]2

)}
where Γ0 ≡ 1 and k ≡ 1 as before. Integrating over the
prior distribution of trap depths ρ(E) gives the overall
survival probability,

f(t, t0) = (22)∫ ∞
0

dE ρ(E) exp
{
−e−βE

∫ t

t0

dt′ exp
(

1
2β[γ(t′)−γ(t0)]2

)}
.

The conditional probability density ψ(t | t0) of hopping
next at time t, given that the present trap was entered
at t0 is then

ψ(t | t0) = − d
dt
f(t, t0). (23)

15 The hop-weighted average 〈τ 〉hop, which arises from the
microscopic treatment, is completely equivalent to the time-

weighted average


τ−1

�−1

occ
which arises from the Fokker-Planck

equation used in references [11,12]. See equation (6).
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Hence, the mean yield time, given that the present trap
was entered at time t0 is

〈τ〉t0 =
∫ ∞
t0

dt (t− t0)ψ(t | t0)

=
∫ ∞
t0

f(t, t0) dt. (24)

We next apply equations (21, 22, 24) to two particular
forms of γ(t): steady shear, γ(t) = γ̇ t, and periodic shear,
γ(t) = γ(t+ 2π/ω).

6.1 Steady shear

With a time-independent shear rate, the system reaches a
steady state. (This is true for all temperatures, including
those below Tg: the presence of a finite shear rate destroys
weak ergodicity breaking [11,12].) Therefore, the mean
relaxation time becomes independent of the time of entry
into a trap. Thus equations (21, 24) are related by

〈τ〉hop = 〈τ〉t0

for any t0 we might choose. Thus we obtain

D−1 = 2κ−1T

∫ κ−1

0

du ρ(−T lnκu)
J(u)
u

(25a)

with J(u) ≡
∫ ∞

0

dθ e−u I(θ) (25b)

I(θ) ≡
∫ θ

0

dv ev
2

(25c)

and κ2 ≡ γ̇2/2T (25d)

from the substitutions u−1 = κ eβE and θ = κ t. Here, κ
is a re-scaled shear rate.

To proceed further we must approximate J(u)
(Eq. (25b)). Let us define θ0 by uI(θ0) ≡ 1. Then for
θ > θ0, uI(θ) grows rapidly with θ, while for 0 < θ < θ0

it is small. So we can write∫ ∞
0

dθ e−u I(θ) ≈
∫ θ0

0

dθ = θ0(u).

This approximation is equivalent to saying that shear does
not greatly modify the thermal activation rate while a
particle is in the bottom of a quadratic well, but yielding
is immediate once the particle has been sheared to the
brink of its trap. The result is

J(u) ≈ I−1(1/u) (26)

where I−1 is the inverse of I in equation (25c). We now
approximate this inverse function by

I−1(y) ≈ I−1
approx(y) ≡

{
y for 0 ≤ y < y0

1 +
√

ln y for y0 ≤ y
(27)

0

1

2

3

4

0 1 2 3T

c(T)

Fig. 2. The function appearing in equations (29, 30), c(T ) ≡
T−1y1−T

0 −
√
π

2 T−
3
2 (T − 1) erfc

√
T ln y0, where erfc is the com-

plementary error function and y0 ≈ 1.747.

which is exact in the limits y � 1 and y � 1. The constant
y0 ≈ 1.747 solves y0 = 1 +

√
ln y0 and is the (second16)

point of intersection of the two approximate functions. In
fact, it can be shown that I−1

approx(1/u) is always greater
than J(u) in equation (25a) which it approximates. So,
the resulting approximation for D is a strict lower bound.
General expressions for this are given in Appendix A. Two
regimes of the scaled shear rate arise: κ < y0 and κ > y0.

Using the exponential prior ρ(E) we find, in the limit
of high shear rate,

D−−→
κ→∞

κ

2
√

lnκ
. (28)

So, for fast shear, the diffusion rate is almost proportional
to the shear rate. The imposed shear drags fluid elements
rapidly through trap configurations, with very little time
for thermal activation. More interesting behaviour oc-
curs in the low-shear regime. With the exponential prior,
the approximate (lower bound) D is (for T < 3 — see
Appendix A)

D ≈ (T − 1)
2T

[
1− κT−1c(T )

]−1
for κ < y0. (29)

The function c(T ) is given in Figure 2.
Below the glass transition (T < 1), the diffusion con-

stant is zero in the absence of shear, and particle motion
is sub-diffusive, with

〈
r2
〉

growing as some non-integer
power of time [10]. However, any finite steady shear rate
ensures a steady rate of yielding events and a non-zero
diffusion constant. In this regime, from equation (29),

D−−→
κ→0

1− T
2T c(T )

κ1−T . (30)

Thus, D is a finite, smooth function throughout all of the
(T ,γ̇) plane, except for the line segment (γ̇ = 0 , 0 ≤ T ≤
1), where it vanishes. For non-zero shear rate, there is no
singularity at T = 1, where D becomes −1/(2 lnκ) for low
scaled shear rate κ.

16 Choosing the other solution, y0 = 1, creates an upturn in
the gradient of I−1, generating artefacts.
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6.2 Periodic shear

A planar periodic shear strain, γ(t) = γ(t+ 2π/ω), is ex-
perimentally more easily realizable than a constant shear
rate. If we define the phase φ to be ωt modulo 2π, then
we can express the mean time 〈τ〉t0 spent in each trap on
the walk (defined in Eq. (24)) as a function, τ(φ), only of
the phase at which the current trap was entered. This is
done in Appendix B by averaging 〈τ〉t0 over all oscillatory
cycles, for all times t0 corresponding to phase φ. If p(φ) is
the probability that a trap was entered at phase φ of the
cycle, then the mean residence time in equation (21) is

〈τ〉hop =
∫ 2π

0

dφp(φ) τ (φ). (31)

Let p(φ |φ0) be the conditional probability density of a hop
occurring at phase φ, given that the previous hop was at
φ0. Then p(φ) is the (normalized) solution to the integral
equation

p(φ) =
∫ 2π

0

p(φ |φ0) p(φ0) dφ0. (32)

The quantities p(φ |φ0) and τ(φ) have simple relations to
the distribution ψ(t | t0) given in equation (23). In Ap-
pendix B they are given in terms of a single cycle of the
imposed waveform.

Equation (32) is a homogeneous Fredholm equation
of the second kind, for which the general solution is not
known. However, the problem greatly simplifies in the
limit of small amplitude oscillations, which we now treat.
(Note that this perturbative treatment is only possible for
T > 1, where an unperturbed steady state exists.) In the
absence of shear p(φ) and τ(φ) must be independent of
φ. In that case, we write p(φ) = 1/2π and τ(φ) = τ0.
If the oscillatory shear creates only small perturbations
∆p(φ) = p(φ) − 1/2π and ∆τ(φ) = τ(φ) − τ0, then
equation (31), to first order in small quantities, becomes

〈τ〉hop =
1

2π

∫ 2π

0

τ(φ) dφ. (33)

We have used the fact that p is normalized, so
that

∫ 2π

0 ∆p(φ) dφ = 0. Hence we need only expand
equation (B.2) to lowest order in strain amplitude and
average it over a cycle to find 〈τ〉hop and hence the
diffusion constant. The result for an exponential prior
ρ(E) = exp(−E) and sinusoidal shear of amplitude γ0

is

D−1 =
2T
T − 1

− γ2
0 ω

T−1

∫ ω−1

0

uT−2

1 + u2
du+O(γ4

0 ). (34)

For T < 3, the integral is convergent as ω → 0. In fact, for
any waveform, the low-frequency limit for an exponential
prior is

D−1−−→
ω→0

2T
T − 1

− γ2
0 ω

T−1 g(T ) +O(γ4
0 ) (35)

where, in the sinusoidal case, g(T ) = (π/2) cosec [(T −
1)π/2]. In the high-frequency limit, equation (34) yields
instead

D−1−−→
ω→∞

2T − γ2
0

T − 1
+O(γ4

0).

For larger amplitudes, we can use the results of
Section 6.1. Given a sufficiently low frequency (ω � D),
the shear rate at any given point on the cycle is almost
constant. In that case, the steady-shear expressions for
D−1 can be averaged over a sinusoidal cycle, yielding (for
ω � D)

D ≈ T − 1
2T

[
1− (ω γ0)T−1h(T )

]−1
; γ2

0ω
2 < 2T (36)

and, to within logarithmic factors,

D ∝ ω γ0 ; γ2
0ω

2 � 2T (37)

where h(T ) ≡ 2(T−1)/2c(T )B(T/2, T/2)/π, c is given in
Figure 2 and B is Euler’s integral of the second kind.

We now summarize the effects, calculated above, of
low-frequency periodic shear on diffusion just above the
glass transition. For the smallest amplitudes γ0, we expect
the change in the diffusion constant to be proportional
to γ2

0 ω
T−1. At larger amplitude, this should cross over

to (γ0 ω)T−1, and at the largest amplitudes, D is almost
proportional to ω γ0. We interpret these three regimes as
follows. The smallest oscillations serve only to vibrate par-
ticles within the bottoms of their quadratic potential wells,
thus effectively making all wells just a little shallower.
Larger amplitude strains cause yielding of even the deep-
est wells in the time taken for the affine shear to reach
the yield point. However, the part of the population in
the shallowest wells are thermally activated more quickly
than this affine shear time-scale. The dividing line between
those two parts of the population depends on the shear
rate. At the highest shear rates, the global affine shear
accounts for almost all yielding.

7 Discussion and conclusion

We have studied quantitatively, within a simple hopping
model of glassy dynamics, the relation between diffusion
and rheological responses (in the linear response regime)
and (for the nonlinear regime) the coupling between these
two aspects of the dynamics.

In the presence of a broad distribution of relaxation
times, as the model possesses (and as is generic in hopping
models of the glass transition) one can expect strong viola-
tions of the generalized Stokes-Einstein relation (Eq. (1))
when applied [15] to the self-diffusion of representative
particles in the medium (small probes). The relation holds
only for probe particles large enough that their surround-
ings are properly viewed as a continuum [14]. Effective-
medium theories, and also simple forms of mode-coupling
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theory [2] (in which a single mode of slow relaxation dom-
inates) can give misleading predictions under these con-
ditions. For glassy systems, use of the GSER will under-
predict the diffusivity of particles and/or the rheological
viscoelastic moduli. This is because the latter are domi-
nated by the most immobile and the former is dominated
by the most mobile particles.

In fact, the nature of diffusion in the model is quite
subtle (see Sect. 5): close to (but above) the glass tran-
sition one has an apparently bimodal behaviour. Start-
ing from any initial equilibrium state, a fraction of par-
ticles remain stuck for a long time, but any particle that
has hopped once remains mobile thereafter. It is peculiar
that, despite this, the diffusive behaviour conspires to be
relatively normal (at least for low order moments of the
displacement distribution; moments of fractional negative
order would presumably reveal a different story).

An additional peculiarity of diffusion, which our model
does not include, but which could also lead to enhanced
diffusivity near the glass temperature, has been ob-
served in a recent molecular dynamics simulation [33]. In
reference [33] the effective dimensionality of the most mo-
bile random walks was observed to decrease with temper-
ature. At low temperature, particles moved along string-
like clusters (also seen in Ref. [23]), and therefore covered
greater distances than in an uncorrelated random walk in
three dimensions.

We have also applied our GR model to calculate the
change in the self-diffusion constant when a material is
sheared. After subtraction of affine motion (including Tay-
lor dispersion) [23], or equivalently restricting attention to
diffusion perpendicular to the shear direction, one finds a
strong effect of imposed flow on the mean jump rate [12]
and hence on the diffusion constant. The effect is particu-
larly extreme below the glass transition, where an anoma-
lous (sub-diffusive) behaviour is converted to a finite dif-
fusivity which has, instead, a power law dependence on
the steady shear rate. Such effects should be accessible in
scattering experiments (with wavevector almost perpen-
dicular to the flow direction) on labelled small probes. In
oscillatory shear, an enhancement in D was predicted in
Section 6 for systems above (but near) the glass temper-
ature; this could also be probed via scattering.

The GR model as described in Section 3 was originally
developed in reference [11] to reproduce the generic rheol-
ogy of a class of “soft glassy materials”. (We comment fur-
ther below on its relevance to conventional glasses.) This
class was argued to include, for example, foams, emulsions,
pastes and slurries. Experimentally, their linear viscoelas-
tic behaviour is often characterized by a nearly constant
ratio of the elastic and loss moduli G′(ω), G′′(ω) (G′′/G′
is usually about 0.1) with a frequency dependence that is
either a weak power law (clay slurries, paints, microgels)
or negligible (tomato paste, dense emulsions, dense multi-
layer vesicles) [34]. This behaviour persists down to the
lowest experimentally accessible frequencies. Sometimes a
regime is seen at small ω where G′ is constant and G′′

is decreasing (which can be interpreted in terms of the
model’s behaviour below Tg [11,12,25]).

As mentioned in Sections 1 and 3, there are two dif-
ferences between the GR model used in this paper and its
soft counterpart in [11]. The first is that the soft GR model
refers not to particles, as we have done, but to mesoscopic
material “elements”, large enough for a local elastic strain
variable to be defined but small enough to have strong het-
erogeneity in local yield energies. (For the case of a foam,
say, an “element” could correspond to a domain of several
bubbles, and “yield” to a local topological change.) It is
not necessarily clear what is meant by self-diffusion of such
elements, so in the present paper we have retained a parti-
cle picture, although this is more natural for conventional
glass-forming liquids than for soft glassy materials.

The second difference is that in the soft GR model, T
is replaced by an effective “noise temperature” x. It was
argued in [11] that the resemblance to thermal activation
is formal: the “activated” yield processes are viewed as
arising primarily by coupling to structural rearrangements
elsewhere in the system. Indeed, the elastic energies asso-
ciated with local rearrangements in foams and the like
are many orders of magnitude in excess of kBT , so any
interpretation of x as a true temperature is somewhat un-
convincing for these materials (in contrast to conventional
glasses). Although this interpretation remains problemat-
ical, as discussed in [11,12], with it the soft GR model is
able to reproduce many of the rheological properties of
soft glassy materials.

The results we have obtained for the GR model, con-
cerning breakdown of the GSER and the nature of shear-
induced diffusion, equally apply (with T → x) to the soft
GR model. The breakdown of GSER, arising from the
fact that diffusion and rheology probe different aspects of
the relaxation spectrum, is equally natural in this case;
the other contribution to its breakdown discussed in 4.1,
arising from the temperature dependence of the local at-
tempt frequency, even more so (since x is anyway not
a true temperature). The results of Section 6 for shear-
induced diffusion could also be quite interesting for soft
glassy materials, in which it is easy to apply shear strains
large enough to strongly perturb the intrinsic relaxation
times. The length scales in these materials can be probed
via light scattering; index matching is often possible so
that true tracer diffusion (of a small subset of unmatched
droplets or particles) can be measured [35]. For oscillatory
flows, an important innovation is the echo technique [36] in
which the positions of a given scatterer at identical points
in the shear cycle are compared.

Results on dense emulsions [36] suggest, in fact, that
not only are shear-induced reorganizations easily de-
tectable, but that these have strong temporal and spatial
correlations — regions that reorganize at a given point
in the shear cycle will do so again in the next one. Such
correlations are not included in the (soft) GR model(s)
although they might be added in principle [38]. (It would
require escape from a shallow trap to be preferentially into
another shallow trap, though we do not advocate append-
ing such ad hoc correlations to this simplified model.) It
would be very interesting to know whether the same ap-
plies in conventional glasses; preliminary work on colloidal
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suspensions (which are traditionally thought of in these
terms) suggests not [37].

Finally, we return to the phenomenology of the GR
model in relation to conventional glass-forming liquids. As
explained in Section 3.2, the GR model in its basic form
predicts a viscosity divergence at T = 2, while the diffu-
sion constant vanishes only at T = 1, where the system
has a glass transition to a non-ergodic state. This exis-
tence of a temperature range with finite diffusivity but
infinite viscosity appears to be at odds with the exper-
imentally observed behaviour of conventional glasses. A
common divergence of viscosity and inverse diffusion con-
stant can however be incorporated into the GR model
through a cutoff Emax on the distribution of yield energies
ρ(E); this modification of the model has in fact already
been discussed in reference [12]. It yields a viscosity which
initially follows the original power-law divergence as T = 2
is approached, but then crosses over to η ∼ exp(Emax/T )
as T is lowered further. Similarly, the predicted 1/D would
first seem to diverge as T = 1 is approached from above,
but actually remain finite there and eventually approach
infinity at the same temperature as the viscosity (T = 0).
The shear moduli obey the power laws (Eq. (4)) down
to a cutoff frequency ωmin = exp(−Emax/T ), but then
cross over to low-frequency Maxwell behaviour (G′ ∼ ω2,
G′′ ∼ ω).

The above simple temperature dependences apply if,
as we did throughout, we assume that the (prior) den-
sity of yield energies is temperature independent. This is
of course an approximation; Odagaki, for example, sug-
gested that the width of ρ(E) may in fact scale as the in-
verse of the amount of free volume v(T ) in the system [8].
In all temperature dependences, T v(T ) then replaces T .
As a consequence, if the free volume decreases smoothly
to zero at a finite temperature TVF, a Vogel-Fulcher-like
divergence of η and 1/D at TVF (rather than the above Ar-
rhenius behaviour) would be predicted by the GR model
with energy cutoff. One would then be inclined to locate
the glass transition at that point; if we revert to tempera-
ture independent ρ(E), this corresponds to T = 0 (rather
than T = 1, which is the appropriate choice in the absence
of an energy cutoff). Results in the range 0 < T < 1 for
the GR model with cutoff may therefore actually apply
to supercooled liquids above the glass transition. These
include a dynamic modulus G∗(ω) which becomes more
Maxwellian in the low-frequency range as T is lowered
(for T < 1, one has G′ ∼ const. and G′′ ∼ ωT−1 above the
cutoff frequency ωmin [12], and hence Maxwell behaviour
with relaxation time 1/ωmin for T → 0), in an intriguing
correspondence with data taken by Menon et al. [39].
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(RMLE) and a Royal Society Dorothy Hodgkin fellowship
(PS). We wish to thank P. N. Pusey, F. Lequeux, P. Hébraud
and J.-P. Bouchaud for helpful discussions.

Appendix A: General expressions
for the diffusion constant under steady shear

Substituting equations (26, 27) into (25a) yields lower
bounds on D (upper bounds on D−1) in two regimes:

D−1 < 2κ−1T

∫ κ−1

0

du
ρ(−T lnκu)

u

(
1 +
√

lnu−1
)

for κ > y0 (A.1)

D−1 < 2κ−1T

∫ y−1
0

0

du
ρ(−T lnκu)

u

(
1 +
√

ln u−1
)

+ 2κ−1T

∫ κ−1

y−1
0

du
ρ(−T lnκu)

u2
for κ < y0. (A.2)

In each case, D is approximately equal to the lower bound
for T < 3.

Appendix B: Evaluation of the phase-
dependent relaxation time and conditional
probability under periodic strain

The probability of leaving a trap at time t given that it was
entered at t0 (at phase φ0 = ωt0 mod 2π of the oscillatory
cycle) is ψ(t | t0). Hence the mean time spent in the trap,
given that it was entered at phase φ0, is

τ(φ0) =
∫ ∞
φ0/ω

(t− φ0/ω) ψ(t |φ0/ω) dt

which, from equation (23), gives

τ(φ0) =
∫ ∞
φ0/ω

f(t, φ0/ω) dt

with f defined in equation (22). For compact notation, we
define a(ωt) ≡ γ(t)/

√
2T and τE(φ0) according to

τ(φ0) ≡
∫ ∞

0

ρ(E) τE(φ0) dE.

Thus we find

ω τE(φ0)|E=−T lnωu = (B.1)∫ ∞
φ0

dφ exp

{
−u
∫ φ

φ0

dφ′ exp[a(φ′)− a(φ0)]2
}
.

Since exp[a(φ′) − a(φ0)]2 is a periodic function of φ, the
integrand in equation (B.1) increases by a constant factor
with each cycle φ→ φ+2π. Thus the R.H.S. is a geometric
series of integrals over a single cycle,{ ∞∑

n=0

[
exp

(
−u
∫ 2π

0

dφ′ exp[a(φ′)− a(φ0)]2
)]n}

×
∫ φ0+2π

φ0

dφ exp

{
−u
∫ φ

φ0

dφ′ exp[a(φ′)− a(φ0)]2
}
.
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Finally, τ(φ0) is expressed in terms of a single cycle as

τ (φ0) =
T

ω

∫ ω−1

0

du
ρ(−T lnωu)

u

∫ 2π

0

dφ (B.2)

×
exp

{
−u
∫ φ+2πΘ(φ0−φ)

φ0
dφ′ exp[a(φ′)− a(φ0)]2

}
1− exp

{
−u
∫ 2π

0 dφ′ exp[a(φ′)− a(φ0)]2
}

where Θ(φ0 − φ) is the Heaviside step function.
Similarly,

p(φ |φ0) =
∫ ∞
φ0/ω

δ([ωtmod 2π]− φ) ψ(t |φ0/ω) dt

(with δ(x) the Dirac delta function) is also a geometric
series, from which it follows

p (φ |φ0) = T

∫ ω−1

0

du ρ(−T lnωu)
d

dφ
(B.3)

×
exp

{
−u
∫ φ+2πΘ(φ0−φ)

φ0
dφ′ exp[a(φ′)− a(φ0)]2

}
1− exp

{
−u
∫ 2π

0 dφ′ exp[a(φ′)− a(φ0)]2
} ·
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